
THE
DATA LAYER
From Novice to Expert in 2.5 Seconds

2Introduction

This white paper is a sports car.

You probably didn’t know that when you downloaded it. Or
that you could even download a sports car. Go figure.

This white paper is a sports car among white papers, and
you’re about to go 0 to 60 in your knowledge of the data layer.
Moving from basic to advanced, you’re going to learn about:

The fundamentals of the data layer1

How to populate the data layer (including
on a SPA site)

2

How to reference the data layer in your
tag manager

3

How to use your data layer to simplify
analytics testing

4

Buckle up.

3Table of Contents

INTRODUCTION

THE FUNDAMENTALS

POPULATING THE DATA LAYER

REFERENCING THE DATA LAYER IN YOUR TAG MANAGER

SIMPLIFYING ANALYTICS TESTING WITH THE DATA LAYER

THE FINISH LINE

ABOUT THE AUTHOR

02

04

08

09

12

13

14

4

A data layer is a Javascript object with a consistent
structure that you can reference throughout your dig-
ital property. Ideally it will have a common structure
that is easily identifiable and standards driven.

What is a data layer?

Here’s an analogy:

Think of a data layer as a single drop-off and pick-up
location for parents sending their kids to an elementary
school. Because the school wants to keep everything in
order, they have parents drop children off at one loca-
tion and then pick children up at the same location later
that day. This keeps little Tommy from wandering off or
school staff from wondering where and how kids are
being picked up.

Comparably, the data layer is where you line up all your
data so it can be picked up by the different technologies
you deploy, both first-party and third-party.

Standardized data across channels

Greater governance over data collection

Easier extensibility of technology

The Fundamentals

Why do I need one?

With a data layer, you have a consistent place to put
information that is publicly accessible and can be used
for things like tags, pixels, analytics, or testing tools—
like ObservePoint!

Ultimately, centralizing data collection into a single
hub before distributing it out to different technologies
has the following benefits:

5

Implementing a data layer is as simple as instantiating
a new Javascript object to each page of your site. But
how you implement the data layer (namely, the struc-
ture) is key.

There are competing standards surrounding data lay-
ers, and whichever one you use just has to be right for
you. Having said that, working against a standard is a
massive accelerator. The (most popular) W3C standard
can be found here: Customer Experience Digital Data
Layer 1.0

Google also has a data layer standard, called dataLayer,
but there isn’t necessarily a hard and fast standard (at
least, not that I could find).

In this white paper, I used the W3C standard (the data
layer is called digitalData) in conjunction with an Adobe
Dynamic Tag Management implementation. You can
find information about manipulating Google’s data lay-
er in their developer guide.

There are some differences between instantiating
on a server-side application versus on a single-page
application (SPA) site.

How do I implement a data
layer?

How and where do I
instantiate?

Data layers should be instantiated (created) as early
as possible in the page lifecycle. Data layers are used
by tag management solutions such as Adobe Launch
and Google Tag Manager, so your tag manager will fail
if you reference a ubiquitous foundational data layer
that isn’t there.

For a server-side application

When you’re working with a server-side application,
you’re writing out the data layer directly to the page
before the page is rendered. It captures the data from
various sources, then dumps it onto the page in the
form of a data layer object.

You’re not going to change it often, since you’re build-
ing it out almost completely with each page. A SPA site
allows for more flexibility that way.

There will be more on this topic of server-side data
layers in the section below about populating the data
layer.

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

https://www.w3.org/2013/12/ceddl-201312.pdf
https://www.w3.org/2013/12/ceddl-201312.pdf
https://developers.google.com/tag-manager/devguide

6

Here is a sample of what a data layer might look like.
I created it from the perspective of a product page to
show what that part populates:

{
 “page”: {
 “pageInfo”: {
 “geoRegion”: “US”,
 “sysEnv”: “MyServer”
 },
 “category”: {
 “pageTemplate”: “/product”,
 “pageType”: “Product”,
 “merchandisingCategory”: {
 “catID”: “charlie-category”,
 “subCatID”: “charlie-subcategory”
 }

For a SPA site

You instantiate the data layer for your SPA site with a
simple statement at the tippity-top of the head, like so:

 window[‘digitalData’] = { events: [] };

You want to load the data layer as early as possible because
everything is happening asynchronously, so the earlier the
better.

When you call this digital data layer, it’s empty, but it has
a basic structure that you’ve defined in a global class
elsewhere. Whenever someone does a routing change, it
creates the objects of that class anew, based on whatever
new information you have, overwriting what was in there
before. So you can start small with very little information
(literally nothing), and as you gather more data, add to the
data layer.

Obviously, you put in a lot more data later, but this means
that you do not have to write anything about the presence
of the layer itself.

What does a data layer look
like?

 },
 “attributes”: {
 “errorCode”: null,
 “deviceType”: “desktop”
 }
 },
 “user”: {
 “profile”: {
 “profileInfo”: {
 “profileID”: “47dcebcc-9860-467e-95da-d71d1273898e”,
 “returningStatus”: “returning”,
 “type”: “non-member”
 }
 },
 “attributes”: {
 “isSignedIn”: false
 }
 },
 “product”: [
 {
 “productInfo”: {
 “productID”: “xyz123”,
 “productName”: “Charlie Product Name”
 },
 “attributes”: {
 “ratingValue”: 4.8217,
 “reviewCount”: 785
 }
 }
],
 “cart”: {
 “cartID”: “50d90773-054c-44b9-9baa-4e01141aa211”,
 “promoCode”: “SAVEMORE”,
 “numItems”: 2,
 “price”: {
 “cartTotal”: 147.23,
 “specialOfferCartTotal”: 105.63,
 “basePrice”: 0,
 “currency”: “USD”,
 “shipping”: 0,
 “transactionTotal”: 110.91,
 “tax”: 5.28,
 “allowances”: 41.6,
 “item”: [

7

 {
 “product”: {
 “productInfo”: {
 “productID”: “abc987”,
 “productName”: “Alpha Product”
 }
 },
 “quantity”: 1,
 “price”: {
 “cartTotal”: 47.24,
 “specialOfferCartTotal”: 35.64,
 “basePrice”: 47.24,
 “currency”: “USD”,
 “shipping”: 0,
 “tax”: 1.78,
 “allowances”: 11.6
 },
 “category”: {
 “catID”: “alpha-category”,
 “subCatID”: “alpha-subcategory”
 }
 },
 {
 “product”: {
 “productInfo”: {
 “productID”: “def456”,
 “productName”: “Beta Product”
 }
 },
 “quantity”: 1,
 “price”: {
 “cartTotal”: 99.99,
 “specialOfferCartTotal”: 69.99,
 “basePrice”: 99.99,
 “currency”: “USD”,
 “shipping”: 0,
 “tax”: 0,
 “allowances”: 30
 },
 “category”: {
 “catID”: “beta-category”,
 “subCatID”: “beta-subcategory”
 }
 }
]

 }
 },
 “transaction”: {
 “transactionID”: null,
 “promoCode”: null,
 “total”: {
 “cartTotal”: 0,
 “specialOfferCartTotal”: 0,
 “basePrice”: 0,
 “currency”: null,
 “shipping”: 0,
 “transactionTotal”: 0,
 “tax”: 0,
 “allowances”: 0
 },
 “profile”: {
 “address”: {
 “stateProvince”: null,
 “country”: null
 }
 }
 },
 “event”: [],
 “version”: “1.0”,
 “lastEvent”: {}
}

We can see that in this fictional data layer, the user has
added two items to his cart previously and has applied
a promotion code which has given allowances. As the
user moves through the checkout process and gets to
the order complete stage, the information in the cart
object will be moved into the transaction object, and a
transaction ID given.

Notice that basic instantiations of objects are done,
even when not in use—the above transaction is a good
example of this. By making the empty object, you do
not have to check for its presence beyond the broad-
est try catch on the tag.

With that done, we can easily implement analytics and
tagging.

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

8

The data layer will be filled from server-side code in
the case of a traditional web page, and potentially
modified as data on the page changes.

My recommended methodology is to make a model
structure that matches what you want to see, dummy
it out in json with false data, and then use an online
converter such as http://json2csharp.com/ to make
the classes.

I would then drop those into the project, populate them
from my code and when I am ready to drop them into a
page use something like JsonConvert.SerializeObject. This
example is broadly C#-based but very similar methodol-
ogies can be employed for other server-side languages.

For a SPA site, it will all be modified as the page changes,
which poses difficulties to keep it up to date. But it is
essential that you do so because you will use the data
layer as a form of state for third parties.

There is no cookie cutter way to populate the data lay-
er—how you do so will ultimately depend on the nature
of your website. Below are some of the most common
details that people capture in their data layers:

Methods for pushing data
into the data layer

Populating the Data Layer

Page data (template, obfuscated server name,
browser type)

User data (non-PII: first name, country, state/
province)

Product data (id, name, price, sale price,
category)

Cart data (ids, prices, sale prices, categories)

Event data (routings/url changes, goal clicks)

Transaction data (order number, ids, prices,
sale prices, categories)

Special Note About Security

Never put into a data layer anything private. It is freely
scrapable by competing companies. This includes PII,
so emails, addresses, etc.—all should AT MINIMUM be
hashed. Personally, I refuse to give that info to third
parties, and a lot of tag companies will ask for it.

Likewise, never put info into a page that you wouldn’t
want a competitor to know. The most common infrac-
tions are data about product profit and inventory. If you
want a second party to have this info (and it is useful for
things like weighting product recommendations), then
make it available by a data feed.

Below are a couple negative scenarios that could result
from including sensitive information in your data layer:

A competitor could buy a ton of a product
that is operating at a loss to drive down the
profits of your company.

1

A competitor could automatically purchase
and cancel orders for low inventory products
to cause stock outs.

2

http://json2csharp.com/

9

Data layers make passing data to your tags much, much
easier. We’ll dig into Adobe Dynamic Tag Management
(DTM) specifically, but the same principles apply across
tag managers.

Referencing the Data Layer
in Your Tag Manager

In DTM there are several ways you can grab data from
the page and push it into a data element. Data elements
are what you map to variables for each of your vendors.
In DTM, you can technically grab data from any of the
following:

Adobe Dynamic Tag Manage-
ment (DTM)

A URL parameter

An HTML element using a CSS selector

A cookie

A custom script

A Javascript object

But when it comes to the data layer, you only need to
worry about the last two.

Referencing the data layer for data elements

Once you’ve mapped data layer properties to data ele-
ments in DTM, you can set your eVars, props, and other
analytics variables equal to those data elements.

As a JS Object

Having built out your data layer, creating most data
elements in DTM is easy-peasy. Just create a new data
element, name it, and use standard Javascript syntax
to reference the data within the data layer object, such
as ‘digitalData.cart.cartID’.

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

10

As a custom script

In some cases, you may need to further manipulate
the data in the data layer before including it as a data
element. In this case, you would use a custom script,
which would allow you to manipulate data to be in a
certain format.

One example is when you’re working with a Criteo or
Coherent pixel and you need to grab all the cart items
from the data layer and build out an array in a format
the pixel can read. The code below is an example of for-
matting data pulled from the data layer for a Coherent
pixel:

window._cp=function(){(window._cp.queue=window._cp.
queue|| []).push(arguments)},function(){var a=docu-
ment.createElement(“script”);a.type=”text/javascript”,a.
async=1,a.src=(“https:”==document.location.proto-
col?”https://”:”http://”)+”api.coherentpath.com/tracker/
v1/orvis/analytics.js”;var b=document.getElementsBy-
TagName(“script”)[0];b.parentNode.insertBefore(a,b)}();
var items = _satellite.getVar(‘window.digitalData.transac-
tion.item’) || [];
var itemIds = [];
var itemQtys = [];
var itemAmts = [];
var transactionIds = [];
if(_satellite.isArray(items)&&items.length>0){
 items.forEach(function(item) {
 itemIds.push(item.product.productInfo.productID);
 itemQtys.push(item.quantity);
 itemAmts.push(item.price.basePrice-item.price.allow-
ances);
 transactionIds.push(_satellite.getVar(‘order id’));
 });
}
window._cp(‘recordTrans’, {
sku: itemIds.join(‘|’),
quantity: itemQtys.join(‘|’),
amount: itemAmts.join(‘|’),
transaction_id: transactionIds.join(‘|’)
})

Note: In Adobe Launch you
wouldn’t use the satellite.getVar()
method. You would just reference
the data layer object directly like
this: ‘window.digitalData.cart.item’.

Pro Tip:

The Custom Script option gives you a lot of flexi-
bility for creating data elements (which will later
be passed to your tags). Something you might
wonder: couldn’t I just use a custom script to
scrape data directly from my site instead of
pushing into the data layer first and then into
DTM via the data layer?

A situation where you might be tempted to do so
would be if you had a single vendor that needed
a data point from your site. You think, “Better to
avoid the data layer altogether and just push the
data straight to the vendor.”

Avoid this temptation like the plague! Think
about this: what happens if the structure of your
website changes and you’re no longer able to use
the same Javascript/jQuery selectors to scrape data
from your site? Your tags won’t have access to data
anymore.

Pushing data into a data layer and then referencing
that data layer is much less likely to break. Plus, if
later you have a new vendor that needs access to
that data, it will already be built into the data layer
for you to use. Much better!

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

11

Using Data Elements

Once you’ve created a data element, you can use it for
multiple purposes.

First, you can use it to define page load rules for tag
firing. Because data elements will load before tags, you
can use the value(s) of a data element to determine
whether or not a tag should fire. So you can use your
data layer to determine when tags should fire. So cool!

Second, the data elements serve as the containers for
your variables to reference for data. This allows you to
standardize the data being passed to all your martech
vendors.

Assigning data elements to Adobe Analytics
and Adobe Target

Equipped with your data elements, setting up your
global variables for Adobe Analytics and Adobe Target
is extremely simple. For Adobe Analytics, just select the
eVar or prop name, and then drop in the data element
name surrounded by the “%” symbol, which is Adobe’s
shortcode way of indicating a data element.

Assigning data elements to third-party tags

You can also use data elements for third-party tags using
the Code method. That’s what we’ve done with our Criteo
tag at Orvis.

 window.criteo_q = window.criteo_q || [];
window.criteo_q.push (
 {
 event: “track transaction”,
 id: _satellite.getVar(‘order id’),
 item: _satellite.getVar(‘order items’)
 },
 {
)

Just set the appropriate variable equal to your data ele-
ment like we showed above.

And that’s it! You’ve successfully integrated your data lay-
er with your tag manager. Go ahead and take the rest of
the day off, because the investment you’ve made in your
data layer is going to pay some high dividends. (But make
sure to come back, because we’re not done yet.)

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

12

One of the biggest struggles of collecting data for ana-
lytics and martech is keeping things consistent. As your
website grows, different teams may stray from standard
conventions for naming and populating variables. That
creates problems for reporting and decision-making.

Thankfully, if you’ve correctly implemented and adopted
the data layer, you not only have a central data hub for
your tracking technologies, but you can also centralize
your analytics testing!

A good analogy is to think of automobile recalls: if car
companies can identify issues in a prototype, then they
won’t have to worry about a massive recall process
should that issue get passed on to their manufactured
models. Such it is with finding errors directly in the data
layer, as you have a single location to test for errors.

Simplifying Analytics Testing
with the Data Layer

In the work I do for Orvis, we use ObservePoint’s Rules
feature to validate our data layer values. Below is an
example where the pagename is being passed to Adobe
Analytics (in eVar31) and then ObservePoint is looking
for it in a custom rule—in this case to verify that the
base url has a page name of HOMEPAGE.

After setting this rule, I don’t have to worry because I’ll
receive a notification if anything ever goes wrong.

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

13

While it probably took you more than two and a half
seconds to read this white paper, I ultimately kept my
promise. You’ve moved from a basic understanding
of the data layer to a clearer idea of what it takes to
implement one.

Putting these ideas into practice will take some effort.
But implementing a robust data layer will change the
way you collect data. It will be a pivotal point in your
company’s analytics maturity, giving you that nitro
boost to cross the finish line ahead of the competition.

S C H E D U L E A D E M O C O N T A C T R E D B R E A D L A B

If you need help getting started, visit Red Bread Lab for
assistance and ObservePoint to help you catalog your
data collection for an easier path to implementation.

THE FINISH LINE

https://www.observepoint.com/website-audit/
http://redbreadlab.com/
http://redbreadlab.com/

14

MARTY VANZWIETERING

Marten vanZwietering has been working in the technical space
for the last two decades, programming for a variety of retail,
hospitality and marketing strategy firms. Marty currently
works full-time as a web development manager and architect
at The Orvis Company, an outdoor recreation and sporting
goods brand, and also consults part time for a design and
data company named Red Bread Lab. Marty also loves to
write – his first book, My Unlife, a Zombie Autobiography is
available now, and should be purchased immediately.

About the Author

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

if(!this.onlyOnSubmit){
 switch(this.elementType){
 case LiveValidation.CHECKBOX:
 this.element.onclick = this.oldOnClick;
 // let it run into the next to add a change event too
 case LiveValidation.SELECT:
 case LiveValidation.FILE:
 this.element.onchange = this.oldOnChange;
 break;
 default:
 if(!this.onlyOnBlur) this.element.onkeyup = this.oldOnKeyup;
 this.element.onblur = this.oldOnBlur;
if(document.getElementById("email") && getCookie('_mkto_trk')) {
 console.log ('Form Exists');
 console.log ('Cookie is: ' + getCookie('_mkto_trk'));
 var marketo_tracking = encodeURIComponent(getCookie('_mkto_trk'));
 $.get("/marketo-tracking-cookie-api.php?cookie="+marketo_tracking, function(data, status){
 var mktoLead = data;
 var obj = jQuery.parseJSON(mktoLead);
 console.log ("Result: " + mktoLead);
 }
 }

